GTInvSubGroupQ

GTInvSubGroupQ[group1,group2]
gives True if the group with smaller order is an invariant subgroup of the group with larger order, and gives False otherwise.

DetailsDetails

  • A subgroup of a group is called "invariant subgroup" if for every and every .
  • A necessary and sufficient condition for being an invariant subgroup of is satisfied if consists entirely of complete classes of .
  • Elements of group1 and group2 can be of type symbol, matrix, quaternion or Euler angles (compare GTEulerAnglesQ, GTQuaternionQ and GTSymbolQ).
  • See: W. Hergert, M. Geilhufe, Group Theory in Solid State Physics and Photonics. Problem Solving with Mathematica, chapter 3.2.

ExamplesExamplesopen allclose all

Basic Examples  (1)Basic Examples  (1)

First, load the package:

In[1]:=
Click for copyable input

Then run the examples:

In[2]:=
Click for copyable input
In[3]:=
Click for copyable input
In[4]:=
Click for copyable input
Out[4]=

The order of the groups doesn't matter.

In[5]:=
Click for copyable input
Out[5]=
In[1]:=
Click for copyable input
Out[1]=
In[2]:=
Click for copyable input
Out[2]=