Angular Momentum Operations

GTPack [1,2] contains various modules to handle angular momentum operators and representations.

  • [1] W. Hergert, R. M. Geilhufe, Group Theory in Solid State Physics and Photonics: Problem Solving with Mathematica, Wiley-VCH, 2018 [2] R. M. Geilhufe, W. Hergert, GTPack: A Mathematica group theory package for applications in solid-state physics and photonics, Frontiers in Physics, 6:86, 2018
GTJxgives the x component of the total angular momentum operator
GTJygives the y component of the total angular momentum operatorXXXX
GTJzgives the z component of the total angular momentum operator

The components of the total angular momentum operator in terms of matrix representations acting on a finite sub space indexed by the total angular momentum quantum number J.

Components of the total angular momentum operator
In[1]:=
Click for copyable input
In[2]:=
Click for copyable input
In[3]:=
Click for copyable input
Out[3]//MatrixForm=
Out[3]//MatrixForm=
Out[3]//MatrixForm=
Verify commutation relations.
In[4]:=
Click for copyable input
Out[4]=
In[5]:=
Click for copyable input
Out[5]=
In[6]:=
Click for copyable input
Out[6]=
GTJplusgives the raising operator
GTJminusgives the lowering operator

The raising operator acts as J+|j; m> = |j; m+1>

The lowering operator acts as J-|j; m> = |j; m-1>

J+ and J- are related to Jx and Jy:

J+= Jx + i Jy

J-= Jx - i Jy

Matrix representations
In[7]:=
Click for copyable input
In[8]:=
Click for copyable input
Out[8]//MatrixForm=
Out[8]//MatrixForm=
Define a state vector
In[9]:=
Click for copyable input
Verify action of J+ and normalization.
In[10]:=
Click for copyable input
Out[10]=
In[11]:=
Click for copyable input
Out[11]=
Verify action of J+ as a raising operator:
In[12]:=
Click for copyable input
In[13]:=
Click for copyable input
Out[13]=
Verify action of J- as a lowering operator:
In[14]:=
Click for copyable input
In[15]:=
Click for copyable input
Out[15]=
Verify commutation relations
In[16]:=
Click for copyable input
Out[16]=
In[17]:=
Click for copyable input
Out[17]=
In[18]:=
Click for copyable input
Out[18]=
Verify relation to Jx and Jy
In[19]:=
Click for copyable input
Out[19]=
In[20]:=
Click for copyable input
Out[20]=
GTJTransformapplies a symmetry transformation to the basis functions of an irreducible representation of O(3)
GTJMatrixgives the representation matrix of a symmetry element for an irreducible representation of O(3)
GTJTransform and GTJMatrix are closely related. While GTJTransform gives the action of a symmetry element on one specific basis function, GTJMatrix gives the transformation matrix of the entire subspace.
In[21]:=
Click for copyable input
Out[21]=
In[22]:=
Click for copyable input
Out[22]=
In[23]:=
Click for copyable input
Out[23]//MatrixForm=
GTAngularMomentumRepapplies a symmetry transformation to the basis functions of an irreducible representation of O(3)
GTAngularMomentumCharsgives the representation matrix of a symmetry element for an irreducible representation of O(3)

For the implementation of irreducible representations of O(3), SO(3) and SU(2) we follow [1].

[1] Altman, S. L., Rotations, quaternions, and double groups. Chapter 14. Clarendon, 1986

Install the point group Oh (GTInstallGroup)
In[24]:=
Click for copyable input
Out[24]=
Calculate the character Table (GTCharacterTable)
In[25]:=
Click for copyable input
Calculate the character system of a single s, p, and d electron
In[26]:=
Click for copyable input
Out[26]=
In[27]:=
Click for copyable input
Out[27]=
In[28]:=
Click for copyable input
Out[28]=
Calculate the qualitative splitting in a cubic crystal field
In[29]:=
Click for copyable input
Out[29]=
In[30]:=
Click for copyable input
Out[30]=
In[31]:=
Click for copyable input
Out[31]=
Calculate a matrix representation for d-electrons
In[32]:=
Click for copyable input
In[33]:=
Click for copyable input
Out[33]//MatrixForm=
Out[33]//MatrixForm=
Out[33]//MatrixForm=